TECHNICAL DATA SHEET

CeramaClad AR

DESCRIPTION

CeramaClad AR is a versatile ceramic epoxy coating that can be brushed or sprayed to achieve a resilient wear resistant finish. CeramaClad AR is an elastoplastic ceramic composite chemistry incorporating an advanced blend of urethane and epoxy chemistry coupled with a proprietary blend of ceramic and elastoplastic additives to produce an impact and abrasion resistant coating system that offers higher flexibility versus conventional ceramic based epoxies.

APPLICATIONS

- Conveyance Systems
- Augers
- Marine Exposure
- Flooring
- Chutes
- Hoppers
- Pumps
- Packaging Equipment

COVERAGE DATA

Theoretical coverage rate data

<table>
<thead>
<tr>
<th>Kit Weight</th>
<th>Recommended Coating Thickness</th>
<th>Theoretical Coverage Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(940 ml) (Cartridge Spray)</td>
<td>40 mils (1016 µm)</td>
<td>10 ft² (0.93 m²)</td>
</tr>
<tr>
<td>6.4 Kg (14 lb)</td>
<td>40 mils (1016 µm)</td>
<td>50 ft² (4.65 m²)</td>
</tr>
</tbody>
</table>

Practical Coverage = Theoretical Coverage - Waste Factor

COATING DRY FILM THICKNESS

Minimum thickness – 20 mils (508 µm)
Suggested thickness – 40 mils (1016 µm)
Apply in 2 coats at 20 mils (508 µm) per coat

TECHNICAL DATA

<table>
<thead>
<tr>
<th>Performance / Property</th>
<th>Property Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness</td>
<td>ASTM D2240</td>
</tr>
<tr>
<td>Pull Off Adhesion</td>
<td>ASTM D4541</td>
</tr>
<tr>
<td>X Cut Adhesion</td>
<td>ASTM D6677</td>
</tr>
<tr>
<td>Abrasion Resistance</td>
<td>ASTM D4060</td>
</tr>
<tr>
<td>Flexibility</td>
<td>ASTM D522</td>
</tr>
<tr>
<td>Elongation</td>
<td></td>
</tr>
<tr>
<td>Atlas Cell, 122°F (50°C) for 7 days, NACE TM0174</td>
<td>Pass</td>
</tr>
<tr>
<td>Impact</td>
<td>ASTM D2794</td>
</tr>
</tbody>
</table>

PHYSICAL DATA

Color | Gray, Yellow |
Mix Ratio | 4:1 by volume |
Mix Ratio | 5:6:1 by weight |
Sag Resistance (20 mils / 500 µm) | No Sag |
Pot Life (77°F / 25°C) | 35 minutes |
Low Temperature Application| 50°F (10°C) |
Max. Re-coat Window (77°F / 25°C) | 48 hours |
Percent Solids | 100% |
Odor | Slight to nil |
Mixed Viscosity | 22,000 mPa•s (cP)|
Mixed Density | 1.35 g/ml |
Max. Operating Temp. - Wet Service | 122°F (50°C) |
Max. Operating Temp. - Dry Service | 195°F (90°C) |
Cure Time - Touch (77°F / 25°C) | 3 hours |
Cure Time - Handle (77°F / 25°C) | 8 hours |
Shelf Life | 2 years |

Before applying this product, please refer to the Application Instructions.
SURFACE PREPARATION

Ensure that surface is clean, dry and uncontaminated. Precleaning of the surface is necessary to remove oil, wax or other foreign contaminant which may contaminant the abrasive media and impregnate itself into the blast profile. Always check for ionic salt contamination (chlorides and sulfates) and neutralize the surface as required. Proceed only if the substrate temperature is 3°C (5°F) above the dew point temperature and that the relative humidity is below 85% during surface preparation and coating application. Abrasive blast with clean angular abrasive media. For steel surfaces, blast to a Near White Metal Blast (SSPC-SP10; NACE 2; SA 2.5) with a minimum 75 microns (3.0 mil) depth profile. Blow down the surface before applying the coating to ensure it is free of dust and other loose contaminants.

Pitting Filling/Irregular Welds – Irregular surface roughness caused by welding or corrosion shall be resurfaced with a polymeric metal rebuild compound. Overcoating of the repair area may require roughening of the repair compound before applying the top coat material. Refer to application instructions for the repair compound.

Salt Water Service - It is highly recommended that where the substrate has been exposed to salt water immersion that the surface is abrasive blasted, allowed to sit for 24 hours, followed by high pressure water jetting with a neutralization solution before re-blasting for the application of the coating.

MIXING INSTRUCTIONS

This is a two-component system. COMPLETE UNIT MUST BE MIXED AND APPLIED AT ONE TIME. DO NOT MIX PARTIAL QUANTITIES FROM CONTAINERS OR PROPER RATIOS MAY NOT BE OBTAINED. Ensure product temperature is between 68 – 85°F (20 – 30°C), pre mix Resin Part A and Hardener Part B individually, be sure that any settled material at the bottom of the can is dispersed. Slowly pour the contents of the hardener into the resin while mixing slowly.

Pour a quarter of the hardener into the resin at one time and mix, once dispersed add the remainder of the hardener in small increments while mixing until the full content has been added. Mix for 2 minutes until a uniform color and consistency is achieved. To ensure complete mixing, scrape sides and bottom of container and continue mixing for an additional 1 minute. If a mechanical drill with Jiffy mixer is used, mix at slow rpm speed. Excessive mixing speed will induce air into the mixture and is not recommended.

APPLICATION INSTRUCTIONS

Once mixed, begin application immediately - no induction time is needed. This product will have a short working pot life and will develop exothermic heat due to the polymeric reaction. Contents of the container may be portioned off into smaller containers to maintain pot life. The product may be applied by brush or roller. Work the material into the surface profile to completely wet out the substrate surface to ensure proper adhesion.

FMP CARTRIDGE SPRAY SYSTEM

Refer to the FMP instructional video and reference guide before use. Preheat the cartridge tubes to 140°F - 150°F (60°C - 65°C), do not exceed 165°F (75°C). Shake the cartridge tube to ensure that if any settling occurs that it is redispersed into the product. Set the plungers to a 4:1 ratio. Use the low flow (gray tip) static mixer without check ball valve (white base). Begin the spray application with a minimum inlet air pressure of 5 bar (80 psi). Purge the product through the static mixer to ensure that both resin and hardener components are properly dispensed and that the cartridge plunger depth is equal between both components. The air supply to the atomizer should be set to 3, too much atomization air will increase the surface roughness. Set the plunger speed to a maximum of 2-3 on the dial. Stand a minimum 16 inches (40 cm) from the surface while spraying. Before spraying on target, always trigger the gun off target until well mixed material in achieved.

SINGLE LEG AIRLESS AND PLURAL COMPONENT SPRAY APPLICATION

Consult with FMP for the system guide and set up recommendation for the use of single leg airless and heated plural component equipment for the application of this material.

SPRAY APPLICATION

Prior to full coating application, stripe all continuous welds and edges by brush. Apply coating wet on wet to striped areas. Apply the coating at no more then 500 microns (20 mils) per pass. Apply the coating to the specified thickness in a crisscross multi pass technique.
INSPECTION

Immediately following the application of the coating, visually inspect for pinholes and areas of missed coating. These areas can be repaired immediately if the coating is tacky to touch.

Further inspection is to be performed once the coating has cured. Visually inspect the coating for discoloration, pinholes, uncured coating, blisters, and other visual defects. Mechanical removal and reapplication may be required depending on the defect type.

Where the coating is to be used for immersion service or service where corrosion protection is required, discontinuity testing in accordance with relevant ASTM standards must be performed. The minimum recommended voltage is 2000 volts or 100 volts/mil based on the average coating thickness.

STORAGE & CLEAN UP

1) Use commercial solvents (Xylene, Methyl Ethyl Ketone) to clean tools immediately after use.

2) Once the coating is dry, the material must be abraded off.

3) Keep containers tightly sealed. For cleanup, use M.E.K. or a 50:50 blend of M.E.K. and Xylol.

4) Long time storage should be between 50°F (10°C) and 80°F (27°C).

 DO NOT FREEZE.

5) Use product within 2 years of receiving. Once the product lid is opened it must be resealed tightly. The shelf life will be reduced to 3 months.

CURING PERFORMANCE

FOR CHEMICAL SERVICE THE COATING MUST CURE FOR A FULL 7 DAYS. Force curing for 6 hours at 120°F (50°C) may be used to expedite chemical service. Spray temperature and substrate temperature will affect the coating cure time. The warmer the temperature the faster the reaction speed.

<table>
<thead>
<tr>
<th>Curing Schedule</th>
<th>50°F</th>
<th>60°F</th>
<th>77°F</th>
<th>90°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pot Life</td>
<td>45 min</td>
<td>40 min</td>
<td>35 min</td>
<td>30 min</td>
</tr>
<tr>
<td>Dry to Touch</td>
<td>6.5 hr</td>
<td>5 hr</td>
<td>3 hr</td>
<td>1.5 hr</td>
</tr>
<tr>
<td>Dry to Handle</td>
<td>24 hr</td>
<td>18 hr</td>
<td>8 hr</td>
<td>5 hr</td>
</tr>
<tr>
<td>Full Load Exposure</td>
<td>40 hr</td>
<td>30 hr</td>
<td>20 hr</td>
<td>10 hr</td>
</tr>
<tr>
<td>Max. Recoat Time</td>
<td>72 hr</td>
<td>60 hr</td>
<td>48 hr</td>
<td>36 hr</td>
</tr>
</tbody>
</table>

SAFETY

Before using any products, please refer to the Safety Data Sheet (SDS). Follow standard confined space entry and work procedures, if appropriate.

Wear eye safety protection and full skin protection including chemical resistant gloves. Use NIOSH approved respirator where mist occurs.

Before applying this product, please refer to the Technical Data Sheet.